大连奥数网 - 大连最专业的奥数教育信息门户!

大连奥数网--大连奥数教育信息专业门户,学人教育旗下奥数信息交流平台

当前位置: 主页 > 小学奥数 > 一年级 >

五年级数论问题

时间:2013-07-18 22:00来源: 作者: 点击:
用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除? 解答:被11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。因为1、2、3、4这几个数字的和之差不可能大于11

用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?

解答:被11整除的数的特征是:奇数位上数字的和与偶数位上数字的和之差能被11整除。因为1、2、3、4这几个数字的和之差不可能大于11,因此要被11整除,只能是奇数位上数字的和与偶数位上数字的和之差等于0.所以1和4必须同是奇数位上的数字或者同时偶数位上的数字,这样才能满足以上要求。

当1和4都是奇数位上的数字时,这样的四位数有:1243、1342、4213、4312;当1和4都是偶数位上的数字时则为:2134、3124、2431、3421.所以满足题目要求的数一共有8个。

相关阅读:

了解学而思必读

学而思办学理念

学而思师资介绍

学而思办学成绩

报名常遇到的问题

学而思的退费制度

(责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
用户名: 验证码: 点击我更换图片
栏目列表
推荐内容